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AMANDA COHEN, ANDRÉ HARMSE, KENT E. MORRISON, AND SARAH WRIGHT

Abstract. For positive integers k and n the group of perfect k-shuffles with

a deck of kn cards is a subgroup of the symmetric group Skn. The structure

of these groups was found for k = 2 by Diaconis, Graham, and Kantor and
for k ≥ 3 and a deck of km cards by Medvedoff and Morrison. They also

conjectured that for k = 4 and deck size 2m, m odd, the group is isomorphic

to the group of affine transformations of an m-dimensional vector space over
the field of order 2. That conjecture is proved in this paper, and a complete

conjecture is stated for the the structure of the shuffle groups for all k and n.

1. Background

For positive integers k and n we consider a deck of kn cards. A perfect shuffle
is a permutation of the deck in which the deck is split into k equal packets of n cards
each and then those packets are perfectly interleaved (as if by a k-handed shuffler).
There are k! different perfect shuffles corresponding to the possible orderings of the
k top cards of the packets. The subgroup of the symmetric group Skn generated
by these k! permutations is denoted by Gk,kn. The classification problem for the
perfect shuffle groups is to determine the algebraic structure of these permutation
groups for all k and n.

In 1983 Diaconis, Graham, and Kantor [DGK] completely disposed of the two-
handed shuffles, where k = 2 and n is arbitrary. The two-handed shuffle groups
G2,2n exhibit central symmetry, which means that any pair of cards equidistant
from the center of the deck end up equidistant from the center of the deck after
shuffling. Numbering the cards from top to bottom as

1, 2, . . . , n, n′, . . . , 2′, 1′,

the destination of card i after shuffling is determined by the destination of card i′

and conversely. This symmetry means that there is an induced permutation group
on the set of n centrally symmetric pairs and that G2,2n is a subgroup of Bn, which
is the group of signed permutations. Essentially, the classification of the two-handed
shuffle groups states that generically G2,2n is as large as possible given the parity of
the generators as permutations in S2n and the parity of the induced permutations
in Sn. There are, however, two special cases for small deck size (n = 6 and 12) and
one exceptional infinite family for deck sizes that are powers of 2.

For k > 2 the shuffle groups do not have central symmetry, and the classification
of shuffle groups appears to be less complicated. We conjecture that, apart from
two infinite families, all the groups are either the full symmetric groups or the
alternating groups. In 1987 Medvedoff and Morrison [MM] determined the structure
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of the groups for all k and deck size kn equal to a power of k. This gives one of the
infinite families. At the same time they presented computational evidence (using
CAYLEY) that there was another exceptional family in which k = 4 and kn is an
odd power of 2. Based on the results for decks of size 8 and 32 they conjectured
that for m odd G4,2m is isomorphic to the group of invertible affine transformations
of the m-dimensional vector space over the field F2. The main result of this paper
is a proof of that conjecture.

This leads to the question of whether more shuffle groups of the type Gkj ,km are
composed of affine transformations. In Theorem 3.1 we give a complete answer to
the question. The only values k, j,m for which Gkj ,km is a subgroup of the group
of affine transformations are

(1) k = 2, j = 1 or 2, and m ≥ j.
(2) k = 3, j = 1, m ≥ 1.

The first group of this type that is not affine is G9,27, and we show that, in fact, it is
the full symmetric group S27. With the new results of this paper and the previous
work already mentioned, we believe that there are no more exceptional cases and
that it is reasonable to conjecture the complete classification of the perfect shuffle
groups. The classification for k = 2 is in [DGK] and summarized in [MM]. For
k ≥ 3 we have four cases. The first is proved in [MM]. The second is proved
in this article. The remaining two are still unproved but there are examples and
computational evidence supporting them.

Conjecture 1.1. For k ≥ 3 the shuffle groups Gk,kn are the following:
(1) If kn = km, then Gk,kn is isomorphic to a semi-direct product of (Sk)m

with Zm.
(2) If k = 4 and kn = km, m odd, then Gk,kn is isomorphic to the affine group

of an m-dimensional vector space over F2.
(3) If n ≡ 0 (mod 4) or if n ≡ 2 (mod 4) and k ≡ 0, 1 (mod 4), then Gk,kn is

the alternating group Akn

(4) In all other cases Gk,kn is the symmetric group Skn.

Since there is so much more in the mathematics of shuffles beyond the focus of
this article, we highly recommend the book by S. Brent Morris [M]. It contains a
wealth of material, including magic tricks based on shuffling, k-handed shuffles for
deck sizes kn + q, and many other topics. It has a comprehensive bibliography of
over 100 items.

2. The Main Result

In this section we show that G4,2m acts on the cards as a group of affine transfor-
mations of an m-dimensional vector space over F2. Furthermore, when m is odd,
we show that G4,2m is the full affine group.

Recall that the affine group of a vector space V over a field F is the semi-direct
product of the abelian group V by the group of linear automorphisms of V . The
typical element (v,A) acts on V by x 7→ v + Ax. Composition is given by

(v,A)(w,B) = (v + Aw,AB),

and the inverse is given by

(v,A)−1 = (−A−1v,A−1).
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We denote by Am(Fq) the affine group of an m-dimensional vector space over Fq.
The order of this group is qm(qm − 1)(qm − q) · · · (qm − qm−1).

Lemma 2.1. The affine group Am(F2) is generated by

(2.1) (0, A), (0, B), (e1, I),

where e1 = (1, 0, · · · , 0) and

A =



1 1 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 0
...

...
...

. . .
...

0 0 0 0 · · · 1


, B =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 0 0
...

...
. . .

...
...

0 0 0 · · · 1 0


.

Proof. From [T] we use the result that the matrices A and B generate GLm(F2).
Let (v, C) be any element of Am(F2). Choose D ∈ GLm(F2) such that De1 = v.
We easily check that

(v, C) = (0, D)(e1, I)(0, D−1)(0, C).

Since A and B generate GLm(F2), the elements (0, D), (0, D−1), and (0, C) are in
the subgroup generated by (0, A) and (0, B). �

In the shuffle group Gk,kn we let sσ be the perfect shuffle associated to the
permutation σ ∈ Sk of the k packets. Thus, sI is the shuffle in which the packets
are not rearranged before shuffling. We use the convention that sσsτ means that the
shuffle sσ is performed first and then the shuffle sτ . Now define pσ := sσsI

−1. The
effect of pσ on the deck is to cut the cards into the k packets, rearrange the packets
according to σ, and then to put the packets back together without interleaving
them. Therefore, pσpτ = pστ , and this fact allows us to reduce the number of
generators from the k! perfect shuffles to just three: sI , pσ1 , pσ2 , where σ1 and σ2

are any pair of permutations that generate Sk. Thus, we have the following lemma
giving explicit generators for the four-handed shuffle groups.

Lemma 2.2. The group G4,4n is generated by sI , p(1 2), and p(1 2 3 4).

�
Now we concentrate on the four-handed shuffles in which the deck size is 2m. We

label the cards with the elements of the vector space Fm
2 . The cards are ordered

with (0, . . . , 0) as the top card, followed by (0, . . . , 0, 1), (0, . . . , 0, 1, 0) and so on
until (1, . . . , 1). Thus the cards are labeled top to bottom by the integers 0 to 2m−1
in their binary representation. We let e1, e2, . . . , em be the standard basis of Fm

2 .

Theorem 2.3. The group G4,2m is a subgroup of Am(F2).

Proof. We need to show that each of the three generators of G4,2m acts on the
cards as an affine transformation. For sI we need the following general result [MM]
about sI ∈ Gk,kn. Label the card positions with the integers from 0 to kn − 1.
Then sI fixes the cards in positions 0 and kn − 1 and for the rest it moves the
card at location i to the location ki (mod kn − 1). Now multiplication by k = 4
and reducing modulo 2m − 1 is simply given by a cyclic shift two bits to the left
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on the binary representation. Therefore, sI acts in the same way as the linear
transformation with matrix

0 0 1 0 0
0 0 0 1 0
...

...
...

...
. . .

...
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


.

The generator p(1 2) interchanges the first and the second packets. The cards in
the first packet are those with binary form (0, 0, . . .) and the cards in the second
packet are those with form (0, 1, . . .). Therefore, p(1 2) interchanges the vector
(0, 0, b3, . . . , bm) with the vector (0, 1, b3, . . . , bm) and leaves the rest alone. This can
be expressed by saying that (b1, b2, . . . , bm) is mapped to (b1, b1 +b2 +1, b3, . . . , bm),
and hence p(1 2) is the affine transformation


0
1
0
...
0

 ,


1 0 0 0
1 1 0 0
0 0 1 0
...

...
...

. . .
...

0 0 0 1



 .

The generator p(1 2 3 4) cyclically permutes the packets. Cards in the same packet
have the same first two bits. In the original order these first two bits are 00, 01,
10, and 11. Then p(1 2 3 4) moves them into the order 11, 00, 01, 10. Thus, 00 is
mapped to the 01 position, 01 goes to the 10 position, 10 goes to the 11 position,
and 11 goes to the 00 position. This means that p(1 2 3 4) maps (b1, b2, . . . , bm) to
(b1 + b2, b2 + 1, b3, . . . , bm). Therefore, p(1 2 3 4) is affine and has the form


0
1
0
...
0

 ,


1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
...

...
...

. . .
...

0 0 0 0 1



 .

Each generator of the shuffle group is affine and so G4,2m is a subgroup of Am(F2).
�

Now refer to the generators of Am(F2) given in (2.1).

Lemma 2.4. The affine transformation (0, A) corresponds to p(2 4) and (e1, I)
corresponds to p(1 3)(2 4).

Proof. The matrix A fixes vectors beginning 00 and 10 and it switches the vectors
beginning with 01 with those beginning with 11. That is exactly what p(2 4) does.
The affine transformation (e1, I) changes the first bit from 0 to 1 or 1 to 0. That
means that the 00 packet switches with the 10 packet, and the 01 packet switches
with the 11 packet. This is the packet permutation p(1 3)(2 4). �

Lemma 2.5. The affine transformation (0, B) satisfies (0, B2) = sI
−1.

Proof. In the proof of Theorem 3 we determined that sI is the cyclic shift two
places to the left, while B is the cyclic shift one place to the right. �
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Theorem 2.6. If m = 2 or if m is odd, then the shuffle group G4,2m is the affine
group Am(F2). If m is even and m ≥ 4, then G4,2m is a proper subgroup of Am(F2).

Proof. With the results of the previous two lemmas, the question becomes whether
the linear transformation given by B is in the shuffle group or not. For m = 2,

B =
(

0 1
1 0

)
and so corresponds to p(2 3). In this case the shuffle group and the affine group are
the full symmetric group S4.

Now B has order m and so for m odd, say m = 2j + 1, we have

B−1 = B2j = sI
−j ,

so that B is an element of the shuffle group. Hence, the shuffle group and the affine
group are the same.

Let m = 2j, so that 2m = 4j . Then from [MM] we know that G4,4j is a semi-
direct product of (S4)j with Zj , and so the order of the group is j(4!)j . The order
of Am(F2) is 2m(2m − 1) · · · (2m − 2m−1), which is much larger for all m ≥ 4. For
example, G4,16 has order 1152, while A4(F2) has order 322,560. �

3. Are Any Other Shuffle Groups Affine?

When the deck size is km we can label the cards by the elements of Zm
k . Even

when k is not prime, so that Zk is not a field, we may consider the affine group of
invertible maps on Zm

k having the form x 7→ v + Ax where v is in Zm
k and A is an

invertible m×m matrix over the ring Zk. Having seen that G4,2m is a subgroup of
the affine group, we ask to what extent the shuffle groups Gkj ,km are subgroups of
affine groups.

Theorem 3.1. The only shuffle groups Gkj ,km that are subgroups of affine groups
Am(Zk) are G2,2m , G4,2m with m ≥ 2, and G3,3m . Those that are equal to the full
affine group are G2,2, G4,2m with m odd, and G3,3.

Proof. The proof is broken into a sequence of four lemmas. �

Lemma 3.2. The binary shuffle group G2,2m is a proper subgroup of the affine
group Am(F2).

Proof. The group G2,2m is generated by sI and p(1 2). It is easy to check that sI is
a cyclic shift and that p(1 2) is translation by e1:

sI : (b1, b2, . . . , bm) 7→ (b2, b3, . . . , bm, b1)

p(1 2) : (b1, b2, . . . , bm) 7→ (1 + b1, b2, . . . , bm).

Hence, sI = (0, L) and p(1 2) = (e1, I), where

L =


0 1 0 0 0
0 0 1 0 0
...

...
...

. . .
...

0 0 0 0 1
1 0 0 0 0

 .

One easily verifies that the group generated by these consists of the affine maps of
the form (v, Li) for v ∈ Fm

2 and i = 0, 1, 2, . . . ,m − 1. This shows that G2,2m is



6 AMANDA COHEN, ANDRÉ HARMSE, KENT E. MORRISON, AND SARAH WRIGHT

the semi-direct product of Zm
2 by Zm, with Zm acting by a cyclic shift, as proved

by Diaconis, Graham, and Kantor [DGK, Lemma 4]. In their paper sI is the
“out-shuffle” and s(1 2) = p(1 2)sI is the “in-shuffle.” �

Lemma 3.3. For m ≥ 2 the three-handed shuffle group G3,3m is a proper subgroup
of the affine group Am(F3) and G3,3 = A1(F3) and is isomorphic to S3.

Proof. For generators of G3,3m we use sI , p(1 2), p(2 3) and check their action on
the vectors x = (x1, . . . , xm). We find that sI acts by mapping (x1, . . . , xm) to
(x2, . . . , xm, x1) and so it is linear with the matrix

L =


0 1 0 0 0
0 0 1 0 0
...

...
...

. . .
...

0 0 0 0 1
1 0 0 0 0

 .

The generator p(1 2) has the affine form (e1,M) where M multiplies the first com-
ponent by 2 and leaves the rest alone:

Mx = (2x1, x2, . . . , xm).

Finally, the generator p(2 3) is the linear map M . With a little work one can
determine that any affine transformation in the subgroup generated by these three
elements acts on a vector x by mapping it to some cyclic permutation of (a1x1 +
v1, . . . , amxm + vm) where ai = 1, 2 and vi = 0, 1, 2. This means that each element
of G3,3m has the unique representation as an affine transformation (v, LiD) for
some v ∈ Fm

3 , i = 0, 1, . . . ,m − 1 and D an invertible diagonal matrix. When
m = 1 these exhaust all six of the affine transformations and give the full symmetric
group on three letters. For m ≥ 2, not all affine transformations are of this form.
One may also note that the order of G3,3m is 6mm and the order of Am(F3) is
3m

∏m−1
i=0 (3m − 3i). When m = 1 these are both equal to 6, but for m ≥ 2 the

order of the affine group is larger.
In [MM] it was proved that G3,3m is the semi-direct product of (S3)m by Zm.

The description of G3,3m as affine transformations shows that this group is also the
semi-direct product of the vector group Fm

3 with the subgroup of invertible matrices
{LiD}, which is a group of order m2m. �

Lemma 3.4. For 3 ≤ j ≤ m the shuffle group G2j ,2m is not a subgroup of the
corresponding affine group.

Proof. We will show that p(2 3) is not in the affine group. Since p(2 3) fixes the top
card, which is the zero vector, if it were affine then it would be linear. The top
card of the second packet is ej , the top card of the third packet is ej−1, the top
card of the fourth packet is ej−2 and the top card of the fifth packet is ej−2 + ej .
Now, p(2 3) interchanges the top cards of the second and third packets and leaves
the rest alone. Therefore, p(2 3) does the following:

ej 7→ ej−1

ej−1 7→ ej

ej−2 7→ ej−2

ej−2 + ej 7→ ej−2 + ej
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If p(2 3) were linear then ej−2+ej would map to ej−2+ej−1. Note that this argument
does not work unless j > 2. �

Lemma 3.5. For k = 3 and 2 ≤ j ≤ m or for k ≥ 4 and 1 ≤ j ≤ m, the shuffle
group Gkj ,km is not a subgroup of the corresponding affine group.

Proof. Again we consider p(2 3), which must be linear in order to be affine. The top
card of the second packet is ej , the top card of the third packet is 2ej Then p(2 3)

acts as follows:

ej 7→ 2ej

2ej 7→ ej

If p(2 3) is linear then 4ej = ej , which forces k to be 3. If k = 3, then the assumption
that j ≥ 2 means that there are more than k packets. The top card of packet number
k + 1 is ej−1 and the top card of packet k + 2 is ej−1 + ej . Those cards are fixed
by p(2 3) but if p(2 3) were linear then we would have

p(2 3)(ej−1 + ej) = p(2 3)(ej−1) + p(2 3)(ej) = ej−1 + 2ej ,

which implies that ej = 2ej giving a contradiction. �
We have seen that with the natural labeling of the cards using Zm

k the shuffle
groups are generally not subgroups of the affine group. Could it be that with
some other labeling of the cards, the shuffle groups are realized by affine maps?
Consider the particular group G9,27, which is the group with the smallest values of
the parameters k, j,m that is not naturally affine. For this group we show that the
answer is negative.

Theorem 3.6. The group G9,27 is the full symmetric group S27.

Proof. We are going to use a consequence of a theorem of Jordan’s: a doubly
transitive permutation group containing a transposition is the full symmetric group
[W]. The group G9,27, like all the shuffle groups, is transitive. In order to show
that G9,27 is doubly transitive, it is enough to show that card 2 can be moved to
any location (other than 1) while the top card is fixed.

Number the cards 1, 2, . . . , 27. In cycle form the shuffle sI is

sI = (1)(2 10 4)(3 19 7)(5 11 13)(6 20 16)(8 12 22)
(9 21 25)(14)(15 23 17)(18 24 26)(27).

We also make use of some packet switches

p(1 2) = (1 4)(2 5)(3 6)
p(3 4) = (7 10)(8 11)(9 12).

Looking at the cards in the nine packets

1 4 7 10 13 16 19 22 25
2 5 8 11 14 17 20 23 26
3 6 9 12 15 18 21 24 27

we can see it is easy, using packet switches, to get a card in a particular position
in one packet to that same position in any other packet, such as moving card 4 to
any other top position, 7, 10, 13.... So if we can move card 2 to places 4, 5, and 6,
while keeping the first card fixed, then we can easily move it to places 7 through
27. We notice that 2 and 4 are in the same three-cycle of sI . Therefore, 2 7→ 4
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using (sI)2. Getting card 2 to position 5 is a little more complicated. We notice
that 5 is in the same three-cycle as 11 and 13, and that 13 is also the top card in
the fifth packet. So after we get card 2 to position 4, we switch packets to move it
to position 13 and then shuffle once more to get to 5. So 2 7→ 5 using (sI)2 p(2 5) sI .
Likewise 2 7→ 6 using sI p(4 6) sI . Now, keeping the top card fixed, we can get card
2 to positions 4 through 27. The only position left is 3, but 2 7→ 3 using sI p(3,4) sI .
Therefore, the group G9,27 is doubly transitive.

Now we look for a transposition in G9,27. First we compute

p(1 2) sI = (1 2 11 13 5 10 4)(3 20 16 6 19 7)(8 12 22)
(9 21 25)(14)(15 23 17)(18 24 26)(27).

Notice that there are disjoint cycles of orders 7, 6, and 3. If we repeat this permu-
tation six times we get

(p(1 2) sI)6 = (1 4 10 5 13 11 2),

which is the inverse of the 7-cycle. The other cycles disappear because they have
lengths that divide 6. Next we see that

p(1 2) (p(1 2) sI)6 = (1)(2 10 4)(3 6)(5 11 13).

Raising this to the third power kills the the 3-cycles and gives the transposition

(p(1 2) (p(1 2) sI)6)3 = (3 6).

It follows that G9,27 is S27. �

4. Open Problems

Generically, the shuffle groups fall into cases (3) and (4) of Conjecture 1.1, and
those cases are still open. In each worked out example, such as G9,27, the group
is shown to be doubly transitive and then a transposition or a three-cycle is found
by experimentation. Unfortunately, we have not been able to prove the double
transitivity in general, which is an interesting open problem by itself. Also, the
discovery of a transposition or three-cycle has required computation with the cycle
forms of the generators and is highly dependent on the actual values of k and n.
Perhaps, some essentially different approach is required.

It seems quite possible that some infinite subfamilies could be classified. For
example, with n = 2 and k arbitrary we have only two cards in each packet and the
analysis should be much easier. For k ≡ 0, 1 (mod 4) and k 6= 4 we expect to get
the alternating group, and for k ≡ 2, 3 (mod 4) we expect the symmetric group.

The shuffle groups for k ≥ 3 are generated by three elements, but those that
turn out to be symmetric or alternating groups can actually be generated by two
elements. In the course of this work we also realized that the group A3(F2) ≡ G4,8

can also be generated by just two elements. This leads us to ask which shuffle
groups can be generated by two elements. A related question is that of whether all
the affine groups over F2 (or any finite field) can be generated by two elements.
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