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1 Introduction

Matrices with very few non-zero entries cannot have large rank. On the

other hand matrices without any zero entries can have rank as low as 1.

These simple observations lead us to our main question. For matrices over

finite fields, what is the relationship between the rank of a matrix and the

number of non-zero entries in the matrix? This question motivated a sum-

mer research project collaboration among the authors (two undergraduate

students and their adviser), and although the question seems natural, we

were unable to find any previously published work dealing with it.

We call the number of non-zero entries of a matrix A the weight of A

and denote it by wtA. For matrices over finite fields the weight of A−B is

the most natural way to define the distance between A and B. The weight

of a matrix is then the distance from that matrix to the zero matrix. In

coding theory the distance between vectors defined in this way is called the
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“Hamming distance,”named after Richard Hamming, a pioneer in the field

of error correcting codes.

The rank of A can also be regarded as a measure of the distance from

A to the zero matrix. In fact it can be used to define the distance between

matrices. (The key to showing that the distances defined by either rank

or weight satisfy the triangle inequality is that wt (A + B) ≤ wtA + wt B

and that rk (A + B) ≤ rkA + rkB. Our fundamental questions is about

the relationship between these two measures of distance to the origin in the

space of m × n matrices over Fq.

Sufficient background for sections 1 and 2 is contained in the standard

undergraduate courses in linear algebra and abstract algebra. Although the

first linear algebra course typically deals with real vector spaces, we ex-

pect that the student who has also studied abstract algebra will understand

that the fundamental ideas of linear algebra–linear independence, basis, row

reduction, rank–are valid for vector spaces over arbitrary fields and in par-

ticular over finite fields. The background needed for finite fields is minimal.

We recall that there is a unique field (up to isomorphism) for each prime

power q, which we denote by Fq. However, nothing is needed about the

structure of finite fields, and there is no problem in reading the rest of the

paper with only the field F2 in mind. The third section assumes some prob-

ability background through the Central Limit Theorem and should be found

in an upper-division probability course for mathematics majors.

Having restricted our investigation to matrices over finite fields, we re-

state the fundamental question in this way. Over Fq how many m × n

matrices of rank k and weight w are there? In probabilistic terms we are

asking for distribution of the weight for matrices of rank k. We do not have

the complete answer to this question, and it seems we are far from the com-

plete answer, so there is plenty of work left to be done. The main results

we have are the average value of the weight with the rank fixed (section 2)

and the complete description of the weight distribution for rank one ma-

trices (section 3). In the remainder of the introduction we give some easy

preliminary results and develop some background material.

We consider matrices of fixed size m × n.

2



• The zero matrix is the only matrix of weight 0 and the only matrix of

rank 0.

• Any matrix of weight 1 has rank 1.

• A matrix of rank k has weight at least k.

It is possible to count the matrices of very small rank and weight. For

a matrix of rank 1 and weight 1 we choose a row and column in which to

place one of the q−1 non-zero elements of the field. That gives us mn(q−1)

matrices of rank 1 and weight 1. We leave two more results as exercises for

the reader.

• The number of rank 1 and weight 2 is

1

2
mn(m + n − 2)(q − 1)2.

• The number of rank 2 and weight 2 is

1

2
mn(m − 1)(n − 1)(q − 1)2.

The number of matrices of weight w (regardless of rank) is easy to count.

There are w locations to select and in each location there are q− 1 non-zero

elements to choose. Therefore, the number of m×n matrices of weight w is

(

mn

w

)

(q − 1)w.

The probability that a matrix has weight w, assuming that each matrix is

equally probable, is then

1

qmn

(

mn

w

)

(q − 1)w =

(

mn

w

)

(1 − 1/q)w(1/q)mn−w.

The weight has a binomial distribution with parameters mn and 1 − 1/q,

which means that it is the same as the distribution of the number of heads

in mn tosses of a biased coin with probability of heads being 1 − 1/q.

The number of m × n matrices of rank k (regardless of weight) is more

difficult to count. According to Lidl and Niederreiter [4] the result was first
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proved by Landsberg for q prime in 1893. Let V be a k-dimensional subspace

of the n-dimensional space Fn
q . We can identify the matrices whose column

space is V with the k × n matrices of rank k by using a basis for V . Hence,

the number of m × n matrices of rank k is the product of the number of

k-dimensional subspaces of Fm
q with the number of k × n matrices of rank

k. Formulas 1 and 2 express those two results, which are then put together

in Formula 3 for the number of matrices of rank k.

Formula 1 The number of k × n matrices of rank k is

∏

0≤i≤k−1

(qn − qi) = (qn − 1)(qn − q) · · · (qn − qk−1).

Proof The k rows must be linearly independent vectors of length n. The

first row can be any non-zero vector; there are qn − 1 such vectors. The

second row must be independent of the first row. That means it cannot be

any of the q scalar multiples of that row, but any other row vector is allowed.

There are qn − q vectors to choose from. The third row can be any vector

not in the span of the first two rows. There are q2 linear combinations of

the first two rows, and so there are qn − q2 possible vectors for row 3. We

continue in this way with row i + 1 not allowed to be any of the qi linear

combinations of the first i rows. 2

Now for the number of k-dimensional subspaces of a vector space of

dimension m, we count the number of bases of all such subspaces and then

divide by the number of bases that each subspace has. A basis is an ordered

list of k linearly independent vectors lying in Fm
q . Putting them into a k×m

as the columns what we get is a matrix of rank k. We can use the formula

above (with n replaced by m) to see that there are
∏

0≤i≤k−1
(qm−qi) bases.

Each subspace, however, is represented by multiple bases. In particular, the

number of bases of a k-dimensional space is just the number of k×k matrices

of rank k. Again, we use the formula (with n replaced by k) to see that there

are
∏

0≤i≤k−1
(qk − qi) bases of a particular subspace.

Formula 2 The number of k-dimensional subspaces of an m-dimensional
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vector space over Fq is
∏

0≤i≤k−1
(qm − qi)

∏

0≤i≤k−1
(qk − qi)

.

There is a well-developed analogy in the world of combinatorics between

the subsets of a finite set and the subspaces of a finite dimensional vector

space over a finite field. The number of k-dimensional subspaces of an m-

dimensional vector space is analogous to the number of subsets of size k in

a set of size m, which is given by the binomial coefficient
(m

k

)

. So, we let

(

m

k

)

q

denote the number the number of k-dimensional subspaces of an m-dimensional

vector space over Fq as given in Formula 2. This number is often called

a Gaussian binomial coefficient. The full development of the subset-

subspace analogy is not necessary for us, but an introductory survey can be

found in [3].

With these formulas we have the two factors we need for the number of

m × n matrices of rank k.

Formula 3 The number of m × n matrices of rank k is

∏

0≤i≤k−1
(qn − qi)

∏

0≤i≤k−1
(qm − qi)

∏

0≤i≤k−1
(qk − qi)

.

As one should expect the formula is symmetric in m and n.

2 The Average Weight of Rank k Matrices

As we have mentioned, the weight of a matrix A is the distance between A

and the zero matrix, and we expect that in some way increasing weight is

correlated with increasing rank. In this section we determine the average

weight of the set of matrices of a fixed rank in terms of the the key parameters

q, m, n, and k. Indeed we find that the average weight grows with k when

the other parameters are held fixed.
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We consider the weight as a random variable W , which is the sum
∑

i,j Wij, where Wij is the weight of the i, j entry. Hence, Wij = 1 for

a matrix whose i, j entry is non-zero and Wij = 0 when the entry is 0. Then

the average or expected value of W is the sum of the expected values of the

Wij . The expected value of Wij is simply the probability that the i, j entry

is non-zero. It is this probability that we will compute. An important ob-

servation is that this probability is the same for all i and j. In other words,

the Wij are identically distributed.

Theorem 1 For m×n matrices of rank k the probability that the i, j entry

is non-zero is the same for all i and j.

Proof For a fixed row index i and column index j there is a bijection on the

space of m×n matrices defined by switching row 1 with row i and switching

column 1 with column j. This bijection preserves the rank and weight, and

so it defines a bijective correspondence between the subset of matrices of

rank k with non-zero 1,1 entry and the subset of matrices of rank k with

non-zero i, j entry. 2

With this result we know that the expected value of W is mn times the

average weight of the 1,1 entry, so that we can focus our attention on the

upper left entry. Our analysis depends on the reduced row echelon form.

The definition can be found in any introductory linear algebra text. For

completeness we reproduce the definition in Lay’s book [2]. The leading

entry of a row means the leftmost non-zero entry.

A rectangular matrix is in reduced row echelon form if it has the

following properties:

1. All non-zero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading

entry of the row above it.

3. All entries in a column below a leading entry are zero.

4. The leading entry in each non-zero row is 1.
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5. Each leading 1 is the only non-zero entry in its column.

When an m × n matrix A of rank k is reduced to reduced row echelon

form (by a sequence of elementary row operations) the result is an m × n

matrix whose first k rows form a basis of the row space of A, and whose

remaining m−k rows are zero. Let R be the k×n matrix consisting of these

first k rows. Then there is a unique m×k matrix C such that A = CR. The

entries of C are the coefficients needed to express the rows of A as linear

combinations of the rows of R. Note that C has rank k. Matrices A and B

are said to be row equivalent if one can transform A into B by a sequence

of elementary row operations. Other characterizations of row equivalence

are:

• The reduced row echelon forms of A and B are identical.

• There is an invertible matrix P such that A = PB.

• The null spaces of A and B are identical.

• The row spaces of A and B are identical.

With the last description of row equivalence we see that there is a bijection

between the k × n matrices of rank k in reduced row echelon form and the

subspaces of dimension k in an n-dimensional vector space.

Using the factorization A = CR we are able to express the set of rank k

matrices as the Cartesian product of the set of m×k matrices of rank k with

the set of k × n reduced row echelon matrices of rank k. This means that

A can be selected randomly by independently choosing the factors C and

R. Now the 1,1 entry of A is given by a11 = c11r11 + c12r21 + · · · + c1krk1.

Since R is in reduced row echelon form, r11 is 0 or 1 and the rest of the

first column r21, r31, . . . , rk1 are all 0. Therefore, a11 = c11r11, and so the

probability that the 1,1 entry is non-zero is

P(a11 6= 0) = P(c11 6= 0)P(r11 6= 0).

Now C is m × k and has rank k. Thus, the first column of C is any

non-zero vector of length m, of which there are qm − 1. There are qm−1 − 1
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of those vectors that have a zero in the top entry, and so there are qm−qm−1

that have a non-zero top entry. Then

P(c11 6= 0) =
qm − qm−1

qm − 1
.

The choice of the reduced matrix R is the same as the choice of row space of

A. If any of the vectors in the row space have a non-zero first entry, then the

first column cannot be the zero column and then r11 is not 0. In order that

r11 = 0 the row space of A must be entirely within the n − 1 dimensional

subspace of vectors of the form (0, x2, x3, . . . , xn). The probability of that

occurring is the ratio of the number of k-dimensional subspaces of a space

of dimension n − 1 to the number of k-dimensional subspaces of a space of

dimension n:

P(r11 = 0) =

(n−1

k

)

q
(n
k

)

q

.

Therefore, the complementary probability gives

P(r11 6= 0) = 1 −

(

n−1

k

)

q
(n
k

)

q

.

Using Formula 2 we simplify this to get

P(r11 6= 0) =
qn − qn−k

qn − 1
.

Putting these results together gives us

P(a11 6= 0) =

(

qm − qm−1

qm − 1

)(

qn − qn−k

qn − 1

)

.

As a probability this is more easily analyzed in the following form:

P(a11 6= 0) =
(1 − 1/q)(1 − 1/qk)

(1 − 1/qm)(1 − 1/qn)
.

For matrices with no condition on the rank the probability that a particular

entry is non-zero is 1−1/q. We see that as this is the approximately the case

for m, n, and k large. One case of interest is that of invertible matrices. For
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n × n invertible matrices we have m = n and k = n, and so the probability

that an entry is non-zero simplifies to

1 − 1/q

1 − 1/qn

and so we see that it is slightly more likely that an invertible matrix has

non-zero entries than an arbitrary matrix.

Having determined the probability that the 1,1 entry is non-zero and

hence that the probability that the i, j entry is non-zero, we have proved

the following theorem.

Theorem 2 The average weight of an m×n matrix of rank k over the field

of order q is

mn
(1 − 1/q)(1 − 1/qk)

(1 − 1/qm)(1 − 1/qn)
.

We also see that with m and n fixed the average weight increases as k

increases. It is this formula that best expresses the intuitive idea that in-

creasing rank is correlated with increasing weight.

3 The Weight of Rank One Matrices

We are able to analyze more completely the weight distribution for matrices

of rank one. From Theorem 2 with k = 1 we see that the average weight of

a rank one matrix is

mn
(1 − 1/q)2

(1 − 1/qm)(1 − 1/qn)
.

For m and n large this average is just about mn(1 − 1/q)2, whereas the

average weight for all m×n matrices is mn(1−1/q), and so rank 1 matrices

tend to have a lot more zero entries than the average matrix. For q = 2 this

effect is the most pronounced. On average one fourth of the entries are 1 in

a large rank one matrix over F2, while an average of half the entries are 1

and half are 0 for all matrices.

In the factorization A = CR, where rkA = 1, C is a non-zero column

vector of length m and R is a non-zero row vector of length n whose leading
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non-zero entry is 1. The entries of A are given by aij = cirj , and so the

weight of A is the product of the weights of C and R. The weight of C has

a binomial distribution conditioned on the weight being positive

P(wt C = µ) =

(m
µ

)

(q − 1)µqm−µ

(qm − 1)

Likewise for R the weight distribution is given by

P(wt R = ν) =

(n
ν

)

(q − 1)νqn−ν

(qn − 1)

To select a random R, choose a random non-zero vector of length n and then

scale it to make the leading non-zero entry 1. The scaling does not change

the weight.

Immediately we see that there is a restriction on the possible weight of

a matrix of rank one. For example, for 3 × 4 matrices the weight cannot

be 5, 7, 10, or11 because those numbers are not products µν with 1 ≤ µ ≤ 3

and 1 ≤ ν ≤ 4. All other weights between 1 and 12 are possible.

The weight of rank one matrices is the product of these two binomial

random variables, each conditioned to be positive.

P(wt A = ω) =
∑

µν=ω

P(wt C = µ)P(wt R = ν)

=
∑

µν=ω

(

m

µ

)(

n

ν

)

(q − 1)m+n−µ−νqµ+ν

(qm − 1)(qn − 1)

Because not all weights between 1 and mn occur for rank 1 matrices, plots

of actual probability distributions show spikes and gaps. However, the plots

of cumulative distributions are smoother and lead us to expect a limiting

normal distribution as the size of the matrices goes to infinity. Figures 1

and 2 show this behavior quite well. (In order to plot the approximating

normal distribution we numerically computed the standard deviation of the

weight distribution for the given m, n, and q.)

Theorem 3 As m or n goes to infinity, the weight distribution of rank one

matrices approaches a normal distribution.
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Figure 1: Distribution for the weight of rank 1 matrices, m = n = 25, q = 2.

Proof The weight random variable for rank one matrices of size m × n is

the product of independent binomial random variables conditioned on being

positive. Define W = XY , where X =
∑

1≤i≤m Xi, Y =
∑

1≤j≤n Yj , and

Xi and Yj are independent Bernoulli random variables with probability 1/q

of being 0. Then W is the sum of m independent identically distributed

random variables XiY . Conditioning W on W > 0 is the weight of rank one

matrices. By the Central Limit Theorem the distribution of W converges, as

m → ∞, to a normal distribution after suitable scaling. Now conditioning

on W being positive does not change this result because the probability that

W > 0 is 1 − q−m, which goes to 1 as m → ∞. 2

Therefore, when m and n are large we can use a normal distribution of

mean E(W ) and variance var (W ) to approximate the weight distribution

for rank 1 matrices. Note that this variance is not exactly the variance

of the weight of rank 1 matrices because we have not conditioned on W

being positive. However, the exact computation of that variance is rather

complicated, and because of the theorem it is not any more illuminating
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Figure 2: Cumulative frequency distribution for the weight of rank 1 matri-

ces, m = n = 25, q = 2. The smooth curve is the normal cdf with the same

mean (≈ mn/4 = 156.25) and standard deviation (≈ 44.63).

than the variance of the unconditioned random variable W . The variance

of W is given by

var (W ) = E(W 2) −E(W )2.

Since X and Y are independent binomial random variables,

E(W ) = E(XY ) = E(X)E(Y ) = m(1 − 1/q)n(1 − 1/q) = mn(1 − 1/q)2.

And we have

E(W 2) = E(X2Y 2) = E(X2)E(Y 2).

Then using the independence of the Xi and the fact that X2
i = Xi we get

E(X2) = E

(

(

∑

Xi

)2
)

=
∑

i

E(Xi) +
∑

i6=j

E(Xi)E(Xj)

= m(1 − 1/q) + m(m − 1)(1 − 1/q)2.
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Likewise,

E(Y 2) = E

(

(

∑

Yi

)2
)

=
∑

i

E(Yi) +
∑

i6=j

E(Yi)E(Yj)

= n(1 − 1/q) + n(n − 1)(1 − 1/q)2.

From these it follows that

E(W 2) = mn

(

1 −
1

q

)2

+ mn(m + n − 2)

(

1 −
1

q

)3

+ m(m − 1)n(n − 1)

(

1 −
1

q

)4

.

Finally, the variance of W , which is E(W 2) − E(W )2 can be simplified to

give

var (W ) = mn(1 − n − m)

(

1 −
1

q

)4

+ mn(n + m − 2)

(

1 −
1

q

)3

+ mn

(

1 −
1

q

)2

From this we can see, for example, that for m ≈ n, m,n → ∞, the

variance is of order n3, and so the standard deviation is of order n3/2.

Specializing to square matrices (n × n) over F2, the variance is

n3

8
+

n2

16
,

and so as n grows the standard deviation is asymptotic to (n/2)3/2. In

the example shown in Figures 1 and 2 the standard deviation of the actual

weight distribution of rank one matrices was computed and turns out to be

44.63 (rounded to two places). The value of (n/2)3/2 with n = 25 is 44.19

(also rounded to two places).
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4 Further Questions

Analyzing the CR factorization for rank 2 matrices should conceivably allow

us to find the weight distribution for rank 2, but the analysis is considerably

more difficult, and for higher ranks the difficulty continues to increase. This

suggests gathering some information by simulation, leading to the question

of efficiently generating random matrices of fixed rank. In [1] there is a

treatment of the related problem of randomly generating a subspace of fixed

dimension over a finite field, and Wilf has suggested to us that a random

rank k matrix could be generated by adding together k rank 1 matrices,

which are easy to generate, and then keeping those of rank k. Alternatively,

one might use the CR factorization. Selecting R is exactly the subspace

selection problem in [1]. Selecting C can be done by generating a random

m×k matrix and keeping those of rank k. Which approach is more efficient

we leave as an open question, as well as the question of whether there are

even better ways to generate matrices of a fixed rank.

We have focused on the weight of fixed rank matrices, but it would be

interesting to look at the rank of fixed weight matrices. As an example,

consider the n×n matrices of weight n. Those of rank 1 we have counted in

section 2 and the result is in terms of the divisors of n. Those of rank n are

generalizations of permutation matrices and there are n!(q − 1)n of them.

What about the other ranks? In particular, how many n × n matrices of

weight n and rank n − 1 are there over F2?

Since the weight of A is the distance from A to 0, it plays a role analogous

to the norm of a real or complex matrix. In both cases it is the distance

to the only matrix of rank 0. Now we may ask for the distance from A to

the subset of matrices of rank 1, that is for the minimal distance from A to

some matrix of rank 1. In general we may ask for the distance from A to

the matrices of rank k. For real or complex matrices these distances (using

the linear map norm) are given by the singular values and can easily be

computed [2]. For matrices over finite fields can these distances (define by

the weight) be computed in any other way than by exhaustive search?
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