SectionBibliography
[An]
Andrianov, A.: Euler products corresponding to Siegel modular forms of genus $2$. Russian Math. Surveys {\bf29} (1974), 45--116
[Ap]
Apostol, T.: Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, (1976), xii+338 pp
[AvSm]
Avdispahić, M.; Smajlović, L.: On the Selberg orthogonality for automorphic L-functions.
Arch. Math. (Basel) {\bf94} (2010), 147--154
[Boo]
Booker, A.: L-functions as distributions. preprint (2013) arXiv:1308.3067
[BR]
Barthel, L.; Ramakrishnan, D.: A nonvanishing result for twists of L-functions of $GL(n)$.
Duke Math. J. {\bf74} (1994), no. 3, 681--700.
[Be]
Belt, D.:On the holomorphy of exterior square $L$-function, preprint (2012) arXiv:1108.2200
[BB]
Blomer, V.; Brumley, F.:The role of the Ramanujan conjecture in analytic number theory. Bulletin AMS 50 (2013), 267-320.
[BG]
Bump, D.; Ginzburg, D.: Symmetric square L-functions on GL(r). Ann. of Math. {\bf136} (1992), 137--205
[D2]
Deligne, P.: La conjecture de Weil. I,
Publications Mathématiques de l'IHÈS 43, 273--307
[EZ]
Eichler, M., Zagier, D.: The Theory of Jacobi Forms.
Birkhäuser, Progr. Math. 55 (1985)
[Kac]
Kaczorowski, J:On a generalization of the Euler totient function. Monatsh. Math. 170 (2013), no. 1, 27--48.
[KP]
Kaczorowski, J., Perelli, A.: Strong
multiplicity one for the Selberg class. C. R. Acad. Sci. Paris
Sér. I Math. {\bf332} (2001), 963--968
[K]
Kim, H. {\em A note on Fourier coefficients of cusp forms on ${\rm GL}_n$}. Forum Math. {\bf18} (2006), 115--119
[Ku]
Kurokawa, N.:Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math. {\bf49} (1978), 149--165
[LWY]
Liu, J.; Wang, Y.; Ye, Y.: A proof of Selberg's orthogonality for automorphic L-functions. Manuscripta Math. {\bf118} (2005), 135--149
[LRS]
Luo, W.; Rudnick, Z.; Sarnak, P.: On the generalized Ramanujan conjecture for GL(n). Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), 301--310, Proc. Sympos. Pure Math., 66, Part 2, Amer. Math. Soc., Providence, RI, 1999.
[M]
Murty, M.R.: Stronger multiplicity one for Selberg's class. Harmonic analysis and number theory (Montreal, PQ, 1996), 133--142,
CMS Conf. Proc., 21, Amer. Math. Soc., Providence, RI, 1997.
[MM]
Murty, M.R.; Murty, V.K.: Strong multiplicity
one for Selberg's class. C. R. Acad. Sci. Paris Sér. I Math.
319 (1994), no. 4, 315--320.
[P-S]
Piatetski-Shapiro, I. I.:Multiplicity one theorems. In Borel, Armand; Casselman., W., Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Providence, R.I.: American Mathematical Society, pp. 209--212.
[PSS]
Pitale, A., Saha, A., Schmidt, R.: Transfer of Siegel cusp forms of degree $2$. to appear in Memoirs of AMS (2013)
[Ram]
Ramakrishnan, D.: A refinement of the strong multiplicity one theorem for GL(2). Invent. Math. 116 (1994), no. 1-3, 645-649.
[Raj]
Rajan, C.S.: Refinement of strong multiplicity one for
automorphic representations of GL(n). Proc. Amer. Math. Soc. {\bf128} (2000), 691--700.
[RS]
Roberts, B., Schmidt, R.: Local newforms for $\GSp(4)$. Volume 1918, Lecture Notes in Mathematics, Springer Verlag, Berlin (2007)
[RudSar]
Rudnick, Z., Sarnak, P.: Zeros of principal $L$-functions and random matrix theory. Duke Math. J. {\bf81} (1996), 269--322
[Sa]
Saha, A.: A relation between multiplicity one and Böcherer's conjecture. Preprint (2012)
[Sar]
Sarnak, P.:Notes on the generalized Ramanujan
conjectures. Harmonic analysis, the trace formula, and Shimura
varieties, 659--685, Clay Math. Proc., 4, Amer. Math. Soc., 2005.
[Sel]
Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), 367--385, Univ. Salerno, Salerno, 1992. MR1220477 (94f:11085)
[Ser]
Serre, J.-P.: Lectures on $N_X(p)$. Chapman \& Hall/CRC Research Notes in Mathematics, 11. CRC Press, Boca Raton, FL, 2012
[Sh]
Shahidi, F.: On certain $L$-functions. American Journal of Mathematics. Vol 103, No 2 (1981), 297--355. MR0610479 (82i:10030)
[S]
Soundararajan, K.: Strong multiplicity one for the Selberg class.
Canad. Math. Bull. {\bf47} (2004), 468--474
[W]
Weissauer, R.: Endoscopy for $\GSp(4)$ and the cohomology of Siegel modular three folds. Volume 1968, Lecture Notes in Mathematics, Springer Verlag, Berlin (2009)