at the
American Institute of Mathematics, San Jose, California
organized by
Lionel Levine, Jeremy Martin, David Perkinson, and James Propp
Building on the work of Duval, Klivans, and Martin, we would like to develop a theory of chip-firing for general simplicial or CW-complexes. Is there a generalization of the Baker-Norine theorem to higher dimensions---perhaps a "combinatorial Hirzebruch-Riemann-Roch theorem"? Are there appropriate generalizations of the recurrent elements of the abelian sandpile model? What are the implications of a higher-dimensional theory for combinatorics?
Abelian networks, proposed by Dhar and developed by Bond and Levine, are systems of communicating finite automata satisfying a certain local commutativity condition. As a model of computation, they implement asynchronous algorithms on graphs. The two most widely studied examples of abelian networks are the abelian sandpile model and the rotor-router or Eulerian walkers model. How much more general are abelian networks than these? Is there a computational hierarchy within the class of abelian networks? Is the halting problem for abelian networks decidable in polynomial time?
How can one rigorously identify and classify the rich patterns that arise in identity elements of critical groups? Can the proof of existence of the sandpile scaling limit by Pegden and Smart be adapted to prove properties of the limit? Ostojic has given a heuristic, involving the conformal map $z\mapsto 1/z^2$, for the locations and features of certain sandpile patterns. Can these heuristics be converted into precise conjectures, and what tools would be required to prove these conjectures?
The workshop schedule.
A report on the workshop activities.
A list of open problems.
Papers arising from the workshop: