at the
American Institute of Mathematics, San Jose, California
organized by
James McKernan and Chenyang Xu
Despite recent progress in characteristic zero in all dimensions relatively little is known about the birational geometry of varieties in characteristic $p$, even for threefolds. Kawamata-Viehweg vanishing is one of the central results in characteristic zero but unfortunately it is known that Kodaira vanishing fails even for surfaces in characteristic $p$.
The singularities which appear in the minimal model program are adapted to the use of Kawamata-Viehweg vanishing. In characteristic $p$ there are some closely related singularities which arise naturally when considering the action of Frobenius. One aim of the workshop will be to understand how the two types of singularities compare.
Using ideas and techniques from characteristic zero coupled with some recent progress on alternatives to Kawamata-Viehweg vanishing in characteristic $p$, which use the action of Frobenius, one of the aims of the workshop will be to attack problems in the birational geometry of threefolds and possibly even higher dimensions in characteristic $p$.
The main topics of the workshop are
The workshop schedule.
A report on the workshop activities.
A list of open problems.
Papers arising from the workshop: