Skip to main content

Chapter 13 Answers to Selected Problems

Additional Problems

A 0.6 (a) βˆ’5560Θ·^N/C; (b) 0; (c) 5560Θ·^N/C.

A 0.7 (a) kΞ»/a; (b) βˆ’kΞ»/a.

A 0.8 βˆ’2qkΟ€R2(Δ±^+Θ·^).

A 0.9 (a) 50,000eV; (b) 8.0Γ—10βˆ’15J; (c) 1.33Γ—108m/s.

A 0.11 left side: 1600V/m to left; right side: 300V/m to right.

A 0.18 vf=2IHBD/m.

A 0.20.b 4Γ—10βˆ’5T.

A 0.22 5.8Γ—10βˆ’3T.

A 0.23 0.013s.

A 0.24 Ο€r2B0(6tβˆ’1)/R.

A 0.31 (a) Β±z, (b) Β±x, (c) Β±z, (d) Β±z, (e) Β±x, Β±y.

A 0.36 (a) 20m, 10m, 6.67m; (b) Ο€/10, Ο€/5, 3Ο€/10; (c) 17Hz, 34Hz, 51Hz.

A 0.45 (a) 717nm; (b) 55,800.

A 0.48 (a) Ξ»=1257nm, T=4.19Γ—10βˆ’15s, v=3.0Γ—108m/s, infrared, (b) B=0.2mT;

A 0.51 (b) 2Γ—10βˆ’14m; (c) p=3.3Γ—10βˆ’20kgβ‹…m/s, K=.3.3Γ—10βˆ’13J.

A 0.55 1.3Γ—10βˆ’21m/s.

A 0.59 (a) Ξ”t=6.6Γ—10βˆ’18s; (b) v=4.2Γ—106m/s; (c) L=2.8Γ—10βˆ’11m; (d) 0.13.

A 0.72 5.4cm.

A 0.73 19.4mT.

A 0.80 1.41A.

A 0.82 (a) minimum; (b) 9I0.

A 0.84 y(x,t)=2cos⁑(Ο€xβˆ’2Ο€t).

A 0.86 (b) 2.95; (c) 0.5rad.

A 0.88 (a) \(\frac{1}{1600\pi}\Xunits{m\)^{-2}Extra close brace or missing open brace (b) 1/4; (c) \(P_A = \frac{1}{1000\pi}\Xunits{m\)^{-2}Extra close brace or missing open brace \(P_B = \frac{1}{2000\pi}\Xunits{m\)^{-2}Extra close brace or missing open brace (d) 13/20.

A 0.90 (a) 1+iΞΈβˆ’ΞΈ2/2!βˆ’iΞΈ3/3!+ΞΈ4/4!+iΞΈ5/5!βˆ’ΞΈ6/6!+…; (c) 1βˆ’iΞΈβˆ’ΞΈ2/2!+iΞΈ3/3!+ΞΈ4/4!βˆ’iΞΈ5/5!βˆ’ΞΈ6/6!+…; (g) 0.88+0.48i; (h) 0.88βˆ’0.48i; (i) 1.76; (j) 0.96i; (k) (e0.3i+eβˆ’0.3i)/2; (l) (e0.3iβˆ’eβˆ’0.3i)/2i; (m) 1; (n) e0.6i.

A 0.91 (a) 11E1/5; (b) 3/5 eβˆ’iE1t/ℏ|1⟩+2/5 eβˆ’i4E1t/ℏ|2⟩; (c) 11E1/5.

A 0.92 (a) |Ξ¨(0)⟩=|+x⟩=1/2(|+z⟩+|βˆ’z⟩); (b) E+=βˆ’ΞΌB0,Eβˆ’=+ΞΌB0; (c) |Ξ¨(t)⟩=1/2(eiΟ‰t/2|+z⟩+eβˆ’iΟ‰t/2|βˆ’z⟩); (d) (1βˆ’sin⁑(Ο‰t))/2; (e) (1+sin⁑(Ο‰t))/2.

A 0.96 (b) 2.

A 0.99 (a) e+, W+; (b) e+, e+; (c) Ru, Gd.

A 0.103 4.3Γ—10βˆ’6T.

A 0.104 (a) 0.1mT; (b) 0.2mT; (c) 0.1mT.

Chapter 1

Exercise 1.9.2. (b) x(t)=30ei(Ο€3t+Ο€/2)cm.

Exercise 1.9.5. 35.

Exercise 1.9.7. 1.00A.

Exercise 1.9.9. (b) ΞΈ=0.45∘, 0.90∘, 1.35∘.

Chapter 2

Exercise 2.7.1. Eph=2.48eV, K=6.0Γ—10βˆ’6eV.

Exercise 2.7.3. (a) fc=5.4Γ—1014Hz.

Exercise 2.7.4. (a) 10βˆ’9m or smaller, Eph=1240eV; (b) 10βˆ’9m or smaller, Kelectron=1.5eV.

Exercise 2.7.5. p=4140eV/c or 2.21Γ—10βˆ’24kgm/s.

Exercise 2.7.6. 1.1eV.

Exercise 2.7.7. (a) Eph=2.48Γ—10βˆ’13eV; (b) Ephβ‰ͺUbind, so no chemical bonds affected, including those in DNA.

Exercise 2.7.10. (a) hc2Lj; (b) LkBThc1j; (c) jmax=LkBThc.

Exercise 2.7.13. Kmax=7.1eV.

Chapter 3

Exercise 3.6.4. (a) 0.42; (b) 0.27.

Exercise 3.6.5. (a) 1.06Γ—10βˆ’24kgm/s; (b) 1.15Γ—106m/s.

Exercise 3.6.6. 2.1Γ—10βˆ’26m/s.

Exercise 3.6.7. (a) 6.6Γ—10βˆ’13m; (b) 2.3Γ—10βˆ’12m; (c) (Hint: do you think the binding energy for a proton in a nucleus is 1 eV?)

Exercise 3.6.10. (a) 6.1Γ—10βˆ’19J or 3.8eV; (b) 1.5Γ—10βˆ’33J or 9.6Γ—10βˆ’15eV; (c) 6.9Γ—10βˆ’61J or 4.3Γ—10βˆ’42eV.

Exercise 3.6.13. (a) Works if A=5/6 and B=3; (b) Doesn't work for all values of x.

Exercise 3.6.14. (b) Doesn't work; (c) Works if k=Β±2m(Eβˆ’U0)/ℏ, which is fine since E>U0; (d) Would work if ΞΊ=Β±2m(U0βˆ’E)/ℏ, but E>U0, so this would be an imaginary ΞΊ.

Exercise 3.6.16. E=2 for a solution.

Chapter 4

Exercise 4.7.1. (b) 2L/3; (c) E=9h28mL2.

Exercise 4.7.2. (a) 0.38eV; (b) 1.51eV.

Exercise 4.7.4. L/4 and 3L/4.

Exercise 4.7.10. (a) 7.2Γ—109mβˆ’1; (b) 4.8Γ—10βˆ’11m; (c) 5.2Γ—10βˆ’36m.

Exercise 4.7.12. 47.2ΞΌm, 27.5ΞΌm, 22.0ΞΌm, 66.0ΞΌm, 41.2ΞΌm, 110ΞΌm.

Exercise 4.7.13. 5.18nm.

Exercise 4.7.14. (a) 315nm; (b) 240nm.

Exercise 4.7.16. 15ΞΌm and 7.5ΞΌm.

Chapter 5

Exercise 5.7.3. (a) 12; (b) 0; (c) 12.

Exercise 5.7.5. (a) 15; (b) 110; (c) 12; (d) 0.

Exercise 5.7.6. (a) 12; (b) 12.

Exercise 5.7.7. (b) cos2⁑θ, |X⟩; (c) cos2⁑θ, |θ⟩; (d) sin2⁑θ; (e) cos2⁑θsin2⁑θ.

Exercise 5.7.10. (a) 0.75; (b) 0.067.

Exercise 5.7.11. 0.50.

Exercise 5.7.14. 21cm.

Exercise 5.7.17. (a) 1336; (b) 0; (c) There are numerous answers to this question. The easiest are 22 or βˆ’22 or i22 or βˆ’i22. There are also numerous a+ib combinations that would work, as long as |a+ib|2=12.

Exercise 5.7.19. (a) Two equal intensity beams (1/4 the intensity of the intensity of the initial electron beam) will emerge, one with Sz=+ℏ/2 and the other with Sz=βˆ’β„/2. (b) A beam will emerge from just one of the two exits with Sx=βˆ’β„/2. This beam will be 1/2 the intensity of the initial electron beam.

Chapter 6

1. (a) electrons are indistinguishable, (b) 12|E1↑E1β†“βŸ©βˆ’12|E1↓E1β†‘βŸ©.

2. Yes for both (a) and (b). Electrons and muons are distinguishable.

3. (b) 4 for classical, 3 for bosons, 1 for fermions; (c) 12 for classical, 23 for bosons.

4. 84eV.

8. 3He is a fermion.

10. 0 (that's the point!).

Chapter 7

3. 6.84Γ—10βˆ’34Jβ‹…s.

4. βˆ’1.51eV.

7. (a) 2.8Γ—10βˆ’18, 0.017 and 0.40, (b) 0.026eV, 0.26eV and 2.6eV; (c) 0, 0, and 7.

9. Would expect poor conductivity at 300K, moderate conductivity at 3,000K, and excellent conductivity at 30,000K.

11. (a) 867nm (near-IR); (b) 549nm (yellowish green); (c) 365nm (near-UV).

15. (b)E=βˆ’mk2e42ℏ2.

Chapter 8

1. (a) 3/10, (b) 7/10.

3. (a) c+=3/10, cβˆ’=7/10, |Ο•1⟩=1/3|β†‘βŸ©+2/3|β†“βŸ©, |Ο•2⟩=2/7|β†‘βŸ©+5/7|β†“βŸ©.

4. (a) 0.55; (b) |ψ new βŸ©=1.0|β†‘βŸ©|Ο•1⟩; (c) 13.

7. 0.854.

9. (a) 0.75, (b) 0.67.

Chapter 9

Exercise 9.8.2. Mesons are bosons, baryons are fermions.

Exercise 9.8.6. (a) K+, (b) Ξ½e, (c) K+.

Exercise 9.8.7. (a) yes, (b) no, (c) no, (d) yes.

Exercise 9.8.10. Does not conserve charge.

Exercise 9.8.11. S=βˆ’2.

Exercise 9.8.12. (a) uds, (b) dss, (c) udΒ―.

Exercise 9.8.13. This requires two s-quarks, with total charge βˆ’2/3. No single quark can add q=5/3.

Exercise 9.8.14. (a) n or Ξ”0, (b) Ξ£+ or Ξ£βˆ—+, (c) K0.

Chapter 10

Exercise 10.8.2. (a) 1.022 \mathrm{MeV}, (b) 6.5Γ—10βˆ’22s.

Exercise 10.8.3. (a) 91.2GeV, (b) 7Γ—10βˆ’27s, (c) 2Γ—10βˆ’18m.

Exercise 10.8.8. antigreen.

Chapter 11

Exercise 11.6.3. About two protons should decay.

Exercise 11.6.4. Only Ξ£βˆ’β†’n+Ο€βˆ’.

Exercise 11.6.5. (a) strong, (b) electromagnetic, (c) weak.

Exercise 11.6.7. (a) There are no lighter baryons with S=βˆ’3, (b) weak; strangeness is not conserved, (c) weak interaction is slower than strong or electromagnetic.

Exercise 11.6.8. Ξžβˆ’(1535) decays much faster; it can decay by the strong interaction; Ξžβˆ’(1535)β†’Ξžβˆ’(1322)+Ο€0, while the lighter Ξžβˆ’ must go by a weak interaction.

Exercise 11.6.9. Photons or leptons. Because the weak decay to leptons is much slower than the electromagnetic decay to photons.

Chapter 12

Exercise 12.6.2. about 10βˆ’7 to 10βˆ’6s

Exercise 12.6.6. about 100MeV, pions

Exercise 12.6.9. a) 5730 q, 5640 qΒ―, 330 l, 300 lΒ―, b) 1910 baryons, 1880 antibaryons, c) 30 baryons, 30 leptons, 2180 photons, d) 72.7