Archetype S Summary: Domain is column vectors, codomain is matrices. Domain is dimension 3 and codomain is dimension 4. Not injective, not surjective.
\begin{equation*}
\ltdefn{T}{\complex{3}}{M_{22}},
\lt{T}{\colvector{a\\b\\c}}=
\begin{bmatrix}
a-b&2a+2b+c\\
3a+b+c&-2a-6b-2c
\end{bmatrix}
\end{equation*}
◊ A basis for the null space of the linear transformation: (
Definition KLT)
\begin{equation*}
\set{\colvector{-1\\-1\\4}}
\end{equation*}
Since the kernel is nontrivial
Theorem KILT tells us that the linear transformation is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 1, just from checking dimensions of the domain and the codomain. In particular, verify that
\begin{align*}
\lt{T}{\colvector{2\\1\\3}}&=\begin{bmatrix}1&9\\10&-16\end{bmatrix}
&
\lt{T}{\colvector{0\\-1\\11}}&=\begin{bmatrix}1&9\\10&-16\end{bmatrix}
\end{align*}
This demonstration that $T$ is not injective is constructed with the observation that
\begin{align*}
\colvector{0\\-1\\11}&=\colvector{2\\1\\3}+\colvector{-2\\-2\\8}
\end{align*}
and
\begin{align*}
\vect{z}&=\colvector{-2\\-2\\8}\in\krn{T}
\end{align*}
so the vector $\vect{z}$ effectively "does nothing" in the evaluation of $T$.
◊ A basis for the range of the linear transformation: (
Definition RLT)
Evaluate the linear transformation on a standard basis to get a spanning set for the range (
Theorem SSRLT):
\begin{equation*}
\set{
\begin{bmatrix}1&2\\3&-2\end{bmatrix},\,
\begin{bmatrix}-1&2\\1&-6\end{bmatrix},\,
\begin{bmatrix}0&1\\1&-2\end{bmatrix}
}
\end{equation*}
If the linear transformation is injective, then the set above is guaranteed to be linearly independent (
Theorem ILTLI). This spanning set may be converted to a ``nice'' basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (
Theorem BRS), and perhaps un-coordinatizing. A basis for the range is:
\begin{equation*}
\set{
\begin{bmatrix}1&0\\1&2\end{bmatrix},\,
\begin{bmatrix}0&1\\1&-2\end{bmatrix}
}
\end{equation*}
The dimension of the range is 2, and the codomain ($M_{22}$) has dimension 4. So the transformation is not surjective. Notice too that since the domain $\complex{3}$ has dimension 3, it is impossible for the range to have a dimension greater than 3, and no matter what the actual definition of the function, it cannot possibly be surjective in this situation.
To be more precise, verify that $\begin{bmatrix}2&-1\\1&3\end{bmatrix}\not\in\rng{T}$, by setting the output of $T$ equal to this matrix and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the preimage, $\preimage{T}{\begin{bmatrix}2&-1\\1&3\end{bmatrix}}$, is empty. This alone is sufficient to see that the linear transformation is not onto.
◊ Subspace dimensions associated with
the linear transformation. Examine parallels with earlier results for matrices. Verify
Theorem RPNDD.
\begin{align*}
\text{Domain dimension: }3&&
\text{Rank: }2&&
\text{Nullity: }1
\end{align*}
◊ Invertible: No.
Not injective (Theorem ILTIS), and the relative dimensions of the domain and codomain prohibit any possibility of being surjective.
◊ Matrix representation (Definition MR):
\begin{align*}
B&=\set{
\colvector{1\\0\\0},\,
\colvector{0\\1\\0},\,
\colvector{0\\0\\1}
}\\
&\\
C&=\set{
\begin{bmatrix}1&0\\0&0\end{bmatrix},\,
\begin{bmatrix}0&1\\0&0\end{bmatrix},\,
\begin{bmatrix}0&0\\1&0\end{bmatrix},\,
\begin{bmatrix}0&0\\0&1\end{bmatrix}
}\\
&\\
\matrixrep{T}{B}{C}&=
\begin{bmatrix}
1 & -1 & 0 \\
2 & 2 & 1 \\
3 & 1 & 1 \\
-2 & -6 & -2
\end{bmatrix}
\end{align*}